jueves, 6 de septiembre de 2012

Mecánica de fluidos

La mecánica de fluidos es una rama de la mecánica de los medios continuos, y esta a su vez es una rama de la física que estudia el movimiento de los fluidos y las fuerzas que los provocan; los fluidos se dividen en Gases y líquidos, estos tienen una característica similar y es que son incapaces de resistir esfuerzos cortantes, y esto provoca que no tengan una forma definida.


 La mecánica de fluidos es fundamental en campos tan diversos como la aeronáutica, la ingeniería química , civil e industrial, la meteorología, las construcciones navales y la oceanografía. 


(ENTRE LAS DIVERSAS FUNCIONES DE LA MECÁNICA DE FLUIDOS ESTA LA AERONÁUTICA, LA INGENIERÍA QUÍMICA, LA METEOROLOGÍA Y LA OCEANOGRAFÍA)



La mecánica de fluidos puede dividirse en dos aspectos importantes que son: 


La  Estática de Fluidos Que se ocupa de los fluidos en reposo, es decir sin que existan fuerzas que alteren su posición.

La Dinámica de FluidosQue se ocupa de los fluidos en movimiento, es decir que están bajo fuerzas que alteran su posición.


También está la Hidrodinamica, esté término se aplica al flujo de líquidos o al flujo de gases a baja velocidad, en el que puede considerar se que el gas es esencial mente incomprensible, La aerodinámica, o dinámica de gases, se ocupa del comportamiento de los gases cuando los cambios de velocidad y presión son lo suficiente mente grandes para que sea necesario incluir los efectos de la compresibilidad.
 Entre las aplicaciones de la mecánica de fluidos están la propulsión a chorro, las turbinas, los compresores y las bombas.


2.   PROPIEDADES DE LOS FLUIDOS


Existen  dos  tipos de  propiedades en los fluidos  que pueden ser primarias y secundarias:
PROPIEDADES PRIMARIAS
Propiedades primarias o termodinámicas:
*Presión
*Densidad
*Temperatura
*Energía interna
*Entelapia
*Entropia
*Calores específicos
*Viscocidad

PROPIEDADES SECUNDARIAS
Caracterizan el comportamiento especifico de los fluidos.
*Viscocidad
*Conductividad térmica
*Tensión Superficial
* Compresión


 (En la exposición explicaremos cada una de las propiedades)


para conocer la mecánica de fluidos debemos primero saber que es un fluido.

Un fluido es una es una sustancia que se deforma constantemente en el tiempo, esto quiere decir que es muy sensible a fuerzas externas y no tiene una forma definida: entre los fluidos se encuentran los líquidos y los gases.


                                  3.  ESTÁTICA DE FLUIDOS




Según el investigador Jhon Miller '' La estática de los fluidos estudia las condiciones bajo las cuales un fluido está en reposo, es decir que por tanto no halla escurrimiento, entonces el fluido estará estático o se moverá como un cuerpo rígido, por tanto no habrá corte ; entonces como no hay fuerzas externas no importara si el fluido no tiene forma definida

3.1 HIDROSTÁTICA 

La hidrostática estudia los fluidos en reposo. entre los fluidos se incluyen a los líquidos y a los gases. Los fluidos que se presentan en la naturaleza presentan una viscosidad que dependiendo de las sustancias es alta o es baja, como por ejemplo la del agua y el aire es baja mientras que la miel y la glicerina poseen una viscosidad elevada.
Pero en la hidrostática no se tiene en cuenta la viscosidad porque esta se ocupa de los fluidos en reposo. Y la viscosidad únicamente se manifiesta cuando se mueven las sustancias.
Para estudiar la hidrostática se debe tener en cuenta la  presión y densidad.

3.1.2 Presión 






La presión es la magnitud que relaciona la fuerza con la superficie sobre la que actúa es decir:

P = F/A
Por la definición de presión vemos que su unidad debe estar dada por la relación entre una unidad de fuerza y una unidad de área. En el SI la unidad de fuerza es 1 N  y la del área,1m². Entonces en este sistema la unidad de presión será 1 N/m².


3.1.3 Densidad o Masa específica. 






La densidad de un cuerpo se denomina por la letra ρ (ro) y se define de la siguiente manera:
la densidad o (masa específica) de un cuerpo es la relación entre su masa y su volumen, o sea:
ρ = m/V


Por la definición de densidad, ρ = m/Vobservamos que la unidad de la densidad debe ser la relación entre una unidad de masa y una unidad de volumen. Por tanto, en el SI la unidad de ρ será 1kg/m³. En la practica es muy común el uso de otra unidad: 1g/cm³. Entonces demostramos que
 1g/cm³ = 10³ kg/m³


Ya sabido esto encontramos el principio de Arquimedes quien afirma que todo cuerpo sumergido en un fluido experimenta una fuerza que tiende a  impedir que el liquido se hunda ,esto explica por qué flota un barco muy cargado; el peso del agua desplazada por el barco equivale a la fuerza hacia arriba que mantiene el barco a flote. a esto se le llama empuje hidrostático ascendente

4. DINÁMICA DE FLUIDOS

Para el autor Gareth Williams se centra  principal mente a determinar la fricción que ofrece el mismo dependiendo del grado de viscosidad del mismo. Los fluidos ideales cuya viscosidad es nula o despreciable, en su comportamiento no se observa esfuerzos de corte y por lo tanto no existen fuerzas de fricción con las paredes de los sólidos. 

4.1 HIDRODINÁMICA 





Etimológicamente, la hidrodinámica es la dinámica del agua, puesto que el prefijo griego "hidro-" significa "agua". Aun así, también incluye el estudio de la dinámica de otros fluidos. Para ello se consideran entre otras cosas la velocidad, presión, flujo y gasto del fluido. 
El gasto o caudal es una de las magnitudes principales en el estudio de la hidrodinámica. Se define como el volumen de líquido ΔV que fluye por unidad de tiempo Δt. Sus unidades en el Sistema Internacional son los m3/s y su expresión matemática:
G=ΔV/Δt
Esta fórmula nos permite saber la cantidad de líquido que pasa por un conducto en cierto intervalo de tiempo o determinar el tiempo que tardará en pasar cierta cantidad de líquido.

Dentro de la Hidrodinamica también se encuentran los llamados flujos incomprensibles y sin rozamiento que cumplen el teorema de Bernoulli el cual afirma que la energía mecánica total de un flujo incompresible y no viscoso (sin rozamiento) es constante a lo largo de una línea de corriente. Las líneas de corriente son líneas de flujo imaginarias que siempre son paralelas a la dirección del flujo en cada punto, y en el caso de flujo uniforme coinciden con la trayectoria de las partículas individuales de fluido.  Hay que tener en cuenta que la velocidad aumenta cuando la presión disminuye.

 5. APLICACIONES Y RAMAS DE LA MECÁNICA DE FLUIDOS
La mecánica de fluidos se ha dividido en diferentes ramas que cubren diferentes aspectos de la ingeniería, la física, las matemáticas, etc. Están destinadas a solucionar problemas de la vida cotidiana así como para desarrollar nueva tecnología descubrir nuevos campos de la ciencia es aquí donde nuestro grupo relaciona la física con la tecnología y la importancia de los artefactos que se han creado gracias a esta rama de la física.

AERODINÁMICA

Rama de la mecánica de fluidos que se ocupa del movimiento del aire y otros fluidos gaseosos, y de las fuerzas que actúan sobre los cuerpos que se mueven en dichos fluidos. Algunos ejemplos del ámbito de la aerodinámica son el movimiento de un avión a través del aire, las fuerzas que el viento ejerce sobre una estructura o el funcionamiento de un molino de viento.

SUPERSÓNICA



La supersónica, una rama importante de la aerodinámica, se ocupa de los fenómenos que tienen lugar cuando la velocidad de un sólido supera la velocidad del sonido generalmente en el aire que es el medio por el que se desplaza; muchas veces escuchamos de los aviones supersónicos que superan la velocidad del sonido, es decir mayor de 1.225 km/h



ONDAS DE CHOQUE



En la mecánica de fluidos, una onda de choque es una onda de presión abrupta producida por un objeto que viaja más rápido que la velocidad del sonido . Una de sus características es que el aumento de presión en el medio se percibe como explosiones. 
entre los ejemplos relacionados con la tecnología están:

* Las bombas atómicas y sus ondas explosivas.
* Los aviones supersónicos que superan la velocidad del sonido.
* En la medicina se usan para destrozar los cálculos renales, técnica denomindada litroticia.

Actualmente su uso en medicina estética es conocido para el tratamiento de la celulitis y el efecto llamado "piel de naranja", mejorando a su vez notablemente la elasticidad de la piel y mejora del tono muscular.

TURBINAS

Las turbinas son unas maquinas por las cuales pasa un fluido de forma continua y dicho fluido le entrega su energía a través de un rodete con paletas.

Existen muchos tipos de turbinas pero entre las principales se encuentran: Las turbinas hidráulicas, turbinas térmicas, turbinas eólicas y turbinas submarinas.

COMPRESORES


Un compresor es una máquina de fluido que está construida para aumentar la presión y desplazar cierto tipo de fluidos llamados compresibles, tal como lo son los gases y los vapores.  





5. ALGUNOS EJERCICIOS DE HIDROSTÁTICA Y DE HIDRODINÁMICA.


EJERCICIOS HIDROSTÁTICA:

1. Una estrella de neutrones tiene un radio de 10 Km, y una masa de 2×10³⁰ Kg .    ¿Cuanto pesaría un volumen de 1cm³ de esa estrella bajo la influencia de la atracción gravitacional en la superficie de la tierra?

Solución El peso debe calcularse multiplicando la masa por la aceleración de gravedad. En consecuencia debemos calcular la masa primero. Eso puede hacerse a través del concepto de densidad, puesto que: 

ρmasa estrella / Volumen estrella
es decir, cada cm³ de la estrella tendrá una masa de 0.5×10¹² Kg, por lo tanto en la superficie de la tierra pesará:
W= (0.5×10¹² Kg) (9.8m/s²)= 0.5×10¹² N.
2. Calcula la presión que ejerce un cilindro de acero de 2Kg apoyado por una de sus bases que tiene 3cm de radio.  
Solución:  Necesitamos la fuerza que hace el cilindro sobre el apoyo, es decir su pesoP=m.g = 2 x 9.8 = 19.6 N
Y tambien calculamos la superficie de apoyo que es un circulo de radio 0.03m, por tanto S = 0.00283 m².
Metemos esto en la formula de la presión y:
P= (F/S) = 19.6/0.00283 = 6926Pa 




El control de la presión en los procesos industriales da condiciones de operación seguras. Cualquier recipiente o tubería posee cierta presión máxima de operación y de seguridad variando este, de acuerdo con el material y la construcción. Las presiones excesivas no solo pueden provocar la destrucción del equipo, si no también puede provocar la destrucción del equipo adyacente y ponen al personal en situaciones peligrosas, particularmente cuando están implícitas, fluidos inflamables o corrosivos. Para tales aplicaciones, las lecturas absolutas de gran precisión con frecuencia son tan importantes como lo es la seguridad extrema.
Por otro lado, la presión puede llegar a tener efectos directos o indirectos en el valor de las variables del proceso (como la composición de una mezcla en el proceso de destilación). En tales casos, su valor absoluto  o controlado con precisión de gran importancia ya que afectaría la pureza de losproductos poniéndolos fuera de especificación.
La presión puede definirse como una fuerza por unidad de  o , en donde para la mayoría de los casos se mide directamente por suequilibrio directamente con otra fuerza, conocidas que puede  la de una columna liquida un resorte, un embolo cargado con un peso o un diafragma cargado con un resorte o cualquier otro elemento que puede sufrir una deformación cualitativa cuando se le aplica la presión.
Tenemos que:
Para ver el gráfico seleccione la opción "Descargar" del menú superior
La relación de los diferentes tipos de presión se expresa en la figura siguiente:
Para ver el gráfico seleccione la opción "Descargar" 
Presión Absoluta
Es la presión de un fluido medido con referencia al vacío perfecto o cero absoluto. La presión absoluta es cero únicamente cuando no existe choque entre las moléculas lo que indica que la proporción de moléculas en estado gaseoso o la velocidad molecular es muy pequeña. Ester termino se creo debido a que la presión atmosférica varia con la altitud y muchas veces los diseños se hacen en otros países a diferentes altitudes sobre el nivel del mar por lo que un termino absoluto unifica criterios.
Presión Atmosférica
El hecho de estar rodeados por una masa gaseosa (aire), y al tener este aire un peso actuando sobre la tierra, quiere decir que estamos sometidos a una presión (atmosférica), la presión ejercida por la atmósfera de la tierra, tal como se mide normalmente por medio del barómetro (presión barométrica). Al nivel del mar o a las alturas próximas a este, el valor de la presión es cercano a 14.7 lb/plg2 (101,35Kpa), ,disminuyendo estos valores con la altitud.
Presión Manométrica
Son normalmente las presiones superiores a la atmosférica, que se mide por medio de un elemento que se define la  entre la presión que es desconocida y la presión atmosférica que existe, si el valor absoluto de la presión es constante y la presión atmosférica aumenta, la presión manométrica disminuye; esta diferencia generalmente es pequeña mientras que en las mediciones de presiones superiores, dicha diferencia es insignificante, es evidente que el valor absoluto de la presión puede abstenerse adicionando el valor  de la presión atmosférica a la lectura del manómetro.
La presión puede obtenerse adicionando el valor real de la presión atmosférica a la lectura del manómetro.
Presión Absoluta = Presión Manométrica + Presión Atmosférica.
Vacío
Se refiere a presiones manométricas menores que la atmosférica, que normalmente se miden, mediante los mismos tipos de  con que se miden las presiones superiores a la atmosférica, es decir, por diferencia entre el valor desconocido y la presión atmosférica existente. Los valores que corresponden al vacío aumentan al acercarse al cero absoluto y por lo general se expresa a modo de centímetros de mercurio (cmHg),  de agua, etc.
De la misma manera que para las presiones manométricas, las variaciones de la presión atmosférica tienen solo un efecto pequeño en las lecturas del de vacío.
Sin embargo, las variaciones pueden llegar a ser de importancia, que todo el intervalo hasta llegar al cero absoluto solo comprende 760 mmHg.
Medida de la presión. Manómetro
Para medir la presión empleamos un dispositivo denominado manómetro. Como A y B están a la misma altura la presión en A y en B debe ser la misma. Por una rama la presión en B es debida al gas encerrado en el recipiente. Por la otra rama la presión en A es debida a la presión atmosférica más la presión debida a la diferencia de alturas del líquido manométrico.
p=p0+ 
Para ver el gráfico seleccione la opción "Descargar" del menú superior
 Experiencia de Torricelli
Para medir la presión atmosférica, Torricelli empleó un tubo largo cerrado por uno de sus extremos, lo llenó de mercurio y le dio  sobre una vasija de mercurio. El mercurio descendió hasta una altura h = 0.76 m al nivel del mar. Dado que el extremo cerrado del tubo se encuentra casi al vacíop = 0, y sabiendo la densidad del mercurio es 13.55 g /cm3 ó 13550 kg/m3 podemos determinar el valor de la presión atmosférica.
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Tipos de Medidores de Presión
Los instrumentos para medición de presión pueden ser indicadores, registradores, transmisores y controladores, y pueden clasificarse de acuerdo a lo siguiente:
Para ver el gráfico seleccione la opción "Descargar" del menú superior
Tipo de Manómetro
Rango de Operación
M. de Ionización
0.0001 a 1 x 10-3 mmHg ABS
M. de Termopar
1 x 10-3 a 0.05 mmHg
M. de Resistencia
1 x 10-3 a 1 mmHg
M. Mc. Clau
1 x 10-4 a 10 mmHg
M. de Campana Invertida
0 a 7.6 mmH2O
M. de Fuelle Abierto
13 a 230 cmH2O
M. de Cápsula
2.5 a 250 mmH2O
M. de Campana de Mercurio
(LEDOUX) 0 a 5 mts H2O
M. "U"
0 a 2 Kg/cm2
M. de Fuelle Cerrado
0 a 3 Kg/cm2
M. de Espiral
0 a 300 Kg/cm2
M. de Bourdon tipo "C"
0 a 1,500 Kg/cm2
M. Medidor de esfuerzos (stren geigs)
7 a 3,500 Kg/cm2
M. Helicoidal
0 a 10,000 Kg/cm2
MEDIDAS DE PRESION
Unidades y clases de presión
La presión es una fuerza por unidad de superficie y puede expresarse en unidades tales como pascal, bar, atmosferas, kilogramos por centímetro cuadrado y psi (libras por pulgada cuadrada). En él Sistema Internacional (S.I.) esta normalizada en pascal de acuerdo con las Conferencias Generales de Pesas y Medidas que tuvieron lugar en Paris en octubre de 1967 y 1971, y según la Recomendación Internacional número 17, ratificada en la IIIConferencia General de la Organización Internacional de Metrologia Legal. El pascal es 1 newton por metro cuadrado (1 N/m²), siendo el newton la fuerza que aplicada a un cuerpo.
Tabla 1 de unidades de presión
de masa 1 kg, le comunica una aceleración de 1 m/s² . Como el pascal es una unidad muy pequeña, se emplean también el kilopascal (1 kPa = 10 ² bar), el megapascal (1 MPa = 10 bar) y el gigapascal (1 GPa = 10 000 bar). En la industria se utiliza también el bar (1 bar = 10^ 5 Pa = 1,02 kg/cm. cuadrado) y el kg/CM2, Si bien esta última unidad, a pesar de su uso todavía muy extendido, se emplea cada vez con menos frecuencia.
En la tabla 1. figuran las equivalencias entre estas unidades.
La presión puede medirse en valores absolutos o diferenciales. En la figura 1.1 se indican las clases de presión que los instrumentos miden comúnmente miden en las industrias.
Figura 1.1 Clases de Presion
La presion absoluta mide con relación al cero absoluto de presión (puntos A y A' de la figura 1.1).
La presión atmosférica es la presión ejercida por la atmosfera terrestre medida mediante un barometro. A nivel del mar, esta presión es proxima a 760 mm (29,9 pulgadas) de mercurio absolutas o 14,7 psia (libras por pulgada cuadrada absolutas) y estos valores definen la presión ejercida por la atmosfera estandar.
La presión relativa es la determinada por un elemento que mide la diferencia entre la presión absoluta y la atmosferica del lugar donde se efectúa la medición (punto B de la figura). Hay que señalar que al aumentar o disminuir la presión
atmosférica, disminuye o aumenta respectivamente la presión leída (puntos
(B yB'), si bien ello es despreciable al medir presiones elevadas.
La presión diferencial es la diferencia entre dos presiones, puntos C y C'. El vacío es la diferencia de presiones entre la presión atmosférica existente y la presión absoluta, es decir, es la presión medida por debajo de la atmosférica(puntos D, D' y D"). Viene expresado en mm columna de mercurio, mm columna de agua o pulgadas de columna de agua. Las variaciones de la presión atmosférica influyen considerablemente en las lecturas del vacío.
El campo de aplicación de los medidores de presión es amplio y abarca desde valores muy bajos (vacío) hasta presiones de miles de bar. En anexo 1pueden verse los tipos de instrumentos y su campo de aplicación.
Los instrumentos de presión se clasifican en tres gruposmecánicos, neumáticos, electromecánicos y electrónicos.
Elementos mecánicos
Se dividen en:
Elementos primarios de medida directa que miden la presión comparándola con la ejercida por un liquido de densidad y altura conocidas (barómetro de cubeta, manómetro de tubo en U, manómetro de tubo inclinado, manómetro de toro pendular, manómetro de campana), y .
Elementos primarios elásticos que se deforman por la presión interna del fluido que contienen.
Los elementos primarios elásticos mas empleados son: el tubo Bourdon, el elemento en espiral, el helicoidal, el diafragma y el fuelle.
El tubo Bourdon es un tubo de sección elìstica que forma un anillo casi completo, cerrado por un extremo. AI aumentar la presión en el interior del tubo, éste tiende a enderezarse y el movimiento es transmitido a la aguja indicadora, por un sector dentado y un piñón. La Iey de deformación del tubo Bourdon es bastante compleja y ha sido determinada empíricamente a través de numerosas observaciones y ensayos en varios tubos.
El material empleado normalmente en el tubo Bourdon es de acero inoxidable, aleación de cobre o aleaciones especiales como hastelloy y monel.
El elemento en espiral se forma arrollando el tubo Bourdon en forma de espiral alrededor de un eje común, y el helicoidal arrollando mas de una espira en forma de hè1ice. Estos elementos proporcionan un desplazamiento grande del extremo libre y por ello, son ideales para los registradores.
El diafragma consiste en una o varias capsulas circulares conectadas rigidamente entre si por soldadura, de forma que al aplicar presión, cada capsula se deforma y la suma de los pequeños desplazamientos es amplificada por un juego de palancas. El sistema se proyecta de tal modo que, al aplicar presión, el movimiento se aproxima a una relacion lineal en un intervalo de medida lo mas amplio posible con un minimo de histèresis y de desviación permanente en el cero del instrumento.
El material del diafragma es normalmente aleacion de niquel o inconel x. Se utiliza para pequeñas presiones.
El fuelle es parecido al diafragma compuesto, pero de una sola pieza flexible axialmente, y puede dilatarse o contraerse con un desplazamiento considerable.
Hay que señalar que los elementos de fuelle se caracterizan por su larga duración, demostrada en ensayos en los que han soportado sin deformación alguna millones de ciclos de flexión. El material empleado para el fuelle es usualmente bronce fosforoso y el muelle es tratado térmicamente para mantener fija su constante de fuerza por unidad de compresiòn. Se emplean para pequeñas presiones.
Los medidores de presión absoluta consisten en un conjunto de fuelle y muelle opuesto a un fuelle sellado al vacio absoluto. El movimiento resultante de la unión de los dos fuelles equivale a la presión absoluta del fluido. El material empleado para los fuelles es latón o acero inoxidable. Se utilizan para la medida exacta y el control preciso de bajas presiones, a las que puedan afectar las variaciones en la presión atmosférica. Por ejemplo, en el caso de emplear un vacuometro para el mantenimiento de una presión absoluta de 50 mm de mercurio en una columna de destilación, el punto de consigna seria de 710 mm, con una presión atmosférica de 760 mm. Si la presión atmosférica cambiase a 775 mm cl vacuometro indicaría: 710 + 15 = 725 mm con lo cual la presión absoluta en la columna sería controlada a 50 + 15 = 65 mm, es decir, a un 30 % más de la deseada.
En la medida de presiones de fluidos corrosivos pueden emplearse elementos primarios elásticos con materiales especiales en contacto directo con el fluido. Sin embargo, en la mayoría de los casos es más económico utilizar un fluido de sello cuando él fluido es altamente viscoso y obtura el elemento (tubo Bourdon, por ejemplo), o bien, cuando la temperatura del proceso es demasiado alta. Tal ocurre en la medición de presión del vapor de agua en que el agua condensada aísla el tubo Bourdon de la alta temperatura del vapor figura 1.2 a.
Se emplean asimismo sellos volumétricos de diafragma y de fuelle figura b y c que contienen un liquido incompresible para la transmisión de la presión.
Figura 1.2 Tipos de Sellos
En la tabla 2 pueden verse las características de los elementos mecánicos descritos.
Tabla 2 elementos mecanicos
Elementos neumáticos
Como elementos neumáticos consideramos los instrumentos transmisores neumaticos
Transmisores neumáticos
Los transmisores neumáticos se basan en el sistema tobera-obturador que convierte el movimiento del elemento de medición en una señal neumática.
El sistema tobera-obturador consiste en un tubo neumático aumentado a una presión constante P,,, con una reducción en su salida en forma de tobera, la cual puede ser obstruida por una lámina llamada obturador cuya posición depende del elemento de medida. En la figura 2.1 se presenta el conjunto.
Figura 2.1 Sistema tobera-obturador
El aire de alimentación de presión normalizada 1,4 bar (20 psi) pasa por la restricción R y llena el volumen cerrado V escapándose a la atmósfera por la tobera R,. Ésta tiene un diámetro muy pequeño, de unos 0,25-0,5 mm, mientras que la restricción R tiene un diámetro alrededor de 0,1 mm. Con el obturador abierto la presión posterior remanente es de unos 0,03 bar, lo cual indica que la relación de presiones diferenciales a través de la restricción R es de 1,4/0,03 =-= 50 veces. El consumo de aire del conjunto tobera-obturador es relativamente pequeño, del orden de 3 NI/min.
El escape de aire a través de la tobera depende de la posición del obturador, es decir, del valor de x. Debido a este escape, el volumen V se encontrará a una presión P, intermedia entre P, y la presión atmosférica. En efecto: para x = 0 el obturador tapa casi totalmente a la tobera, con lo cual no hay escape de aire a la atmósfera y P, llega a ser casi igual a la presión P, del aire de alimentación: para x relativamente grande el obturador está bastante separado de la tobera y no limita el escape a la atmósfera siendo la presión P, próxima a la atmosférica.
En la figura 2.2 se representa una tobera ejerce una fuerza sobre el obturador F P, X S que tiende a desplazarlo. Esta curva de respuesta típica de un sistema tobera-obturador, pudiendo verse que la misma no es lineal.
El aire que se escapa de la fuerza debe hacerse despreciable con relación a la fuerza del elemento de medida que posiciona el obturador.
Con este objeto, en el amplificador de dos etapas se utiliza sólo una parte reducida de la curva, y se disminuye además la sección de la tobera a diámetros muy pequeños de 0,1 a 0,2 mm (no se consideran diámetros más pequeños para evitar que la tobera se tape por suciedad del aire). De este modo, la parte reducida de la curva puede aproximarse a una línea recta con lo cual se consigue una relación prácticamente lineal entre el valor de la variable y la señal transmitida.
  Figura 2.2 Curva de respuesta de un sistema tobera-obturador
Como la restricción fija R es 3 a 4 veces menor que la tobera R,; sólo pasa por la misma un pequeño caudal de aire, por lo cual, el volumen V debe ser tan reducido como sea posible para obtener un tiempo de respuesta del sistema inferior al segundo.
La válvula piloto (amplificador neumático) empleada en el amplificador de dos etapas figura 2.3 cumple las siguientes funciones:
1. Aumento del caudal de aire suministrado, o del caudal de escape para conseguir tiempos de respuesta inferiores al segundo.
2. Amplificación de presión (ganancia) que suele ser de 4 a 5, en general, para obtener así la señal neumática estándar 3-15 psi (0,2-1 bar).

Figura 2.3 Bloque amplificador de dos etapas
En la válvula piloto con realimentación, sin escape continuo (fig. 2.4 a), la presión posterior P, de la tobera actúa sobre la membrana de superficie S, mientras que la presión de salida Po lo hace sobre la membrana S2. El conjunto móvil de las dos membranas tiende al equilibrio y cuando éste se establece se verifica la siguiente ecuación:
Pl - SI = PO ' S2
La relación
K. = P0 = S1
P1 S2
es el factor de amplificación o de ganancia de la válvula piloto.
En la posición de equilibrio y ante un aumento de la presión posterior P1 de la tobera, el aire de alimentación entra en la válvula aumentando el valor dePo. Por el contrario, si P1 disminuye, el aire contenido en el receptor escapa a través del orificio de escape, con lo cual Po baja. Entre estas dos reacciones del sistema existe una zona muerta debida a la histéresis mecánica de las partes moviles que esta representada en la curvas caracteristicas de presion y caudal de la válvula en las figuras 2.4 c y d.

Figura 2.4 (a,b,c)
El sistema descrito compuesto por el conjunto tobera-obturador y la válvula piloto presenta todavía las siguientes desventajas:
- Las variaciones en la presión del aire de alimentación influyen en la señal de salida.
-Las vibraciones que pueden existir en el proceso influyen en el juego mecánico entre el obturador y el elemento de medida y dan lugar a pulsaciones en la señal de salida, ya que el factor de amplificación del sistema tobera-obturador es muy grande.
Estos inconvenientes se evitan disminuyendo la ganancia del conjunto por realimentación negativa de la señal posterior de la tobera P, sobre el obturador. Se utilizan así tres sistemas de transmisión, el transmisor de equilibrio de movimientos, el de equilibrio de fuerzas y el de equilibrio de momentos.
Transmisor de equilibrio de movimientos
El transmisor de equilibrio de movimientos (fig. 2.5) compara el movimiento del elemento de medición asociado al obturador con un fuelle de realimentación de la presión posterior de la tobera. El conjunto se estabiliza según la diferencia de movimientos alcanzando siempre una posición de equilibrio tal que existe una correspondencia lineal entre la variable y la señal de salida. Hay que señalar que en este tipo de transmisores, las palancas deben ser livianas, pero bastante fuertes para que no se doblen.
Fig. 2.5 Transmisor de equilibrio de movimientos.
  Estos instrumentos se utilizan, en particular, en la transmisión de presión y temperatura donde los elementos de medida tales como tubos Bourdon, manómetros de fuelle, elementos de temperatura de bulbo y capilar son capaces de generar un movimiento amplio, sea directamente o bien a través de palancas con la suficiente fuerza para eliminar el error de histéresis que pudiera producirse. Si la fuerza disponible es pequeña, aparte de la histéresis, el tiempo necesario para el movimiento es grande y el transmisor es lento en responder a los cambios de la variable. En este caso, se acude a los transmisores de equilibrio de fuerzas en los que básicamente el elemento primario de medida genera una fuerza que se equilibra con otra igual yopuesta producida por el transmisor.
Transmisor de equilibrio de fuerzas
En la figura 2.6 puede verse que el elemento de medición ejerce una fuerza en el punto A sobre la palanca AC que tiene su punto de apoyo en D. Cuando aumenta la fuerza ejercida por el elemento de medición, la palanca AC se desequilibra, tapa la tobera, la presión aumenta y el diafragma ejerce una fuerza hacia arriba alcanzándose un nuevo equilibrio. Hay que señalar, como se ha dicho, que en este transmisor los movimientos son inapreciables.
 Fig. 2.6. Transmisor de equilibrio de fuerzas.
Como elementos neumáticos consideramos los instrumentos transmisores neumaticos cuyo elemento de medida es la presion adecuado al campo de medida correspondiente. El tipo de transmisor queda establecido por el campo de medida del elemento segun el anexo 1. Por ejemplo, un transmisor de 0-20 kg/cm2 utilizará un transmisor de equilibrio de fuerzas de tubo Bourdon mientras que uno de 3-15 psi será de equilibrio de movimientos con elemento de fuelle.
Elementos Electromecánicos Electronicos
Los elementos electromecánicos de presión utilizan un elemento mecánico elástico combinado con un transductor eléctrico que genera la señal eléctrica correspondiente. El elemento mecánico consiste en un tubo Bourdon, espiral, helice, diafragma, fuelle o una combinación de los mismos que, a traves de un sistema de palancas convierte la presión en una fuerza o en un desplazamiento mecánico.
Los elementos electromecánicos de presión se clasifican segun el principio de funcionamiento en los siguientes tipos:
Transmisores electrónicos de equilibrio de fuerzas:
Resistivos.
Magnéticos
Capacitivos.
Extensométricos.
Piezoeléctricos.
Transmisores electrónicos de equilibrio de fuerzas
En el anexo 2 está representado un transmisor de este tipo . En este instrumento el elemento mecánico de medición (tubo Bourdon, espiral, fuelle ... ) ejerce una fuerza sobre una barra rigida del transmisor.
Para cada valor de la presión, la barra adopta una posición determinada excitándose un transductor de desplazamiento tal como un detector de inductancia, un transformador diferencial o bien un detector fotoeléctrico. Un circuito oscilador asociado con cualquiera de estos detectores alimenta una unidad magnética y la fuerza generada reposiciona la barra de equilibrio de fuerzas. Se completa asi un circuito de realimentación variando la corriente de salida en forma proporcional al intervalo de presiones del proceso.
En el transmisor de equilibrio de fuerzas con detector fotoeléctrico (anexo 2 c), la barra rígida tiene en su extremo una ventanilla ranurada que interrumpe total o parcialmente un rayo de luz que incide en una cé1ula fotoeléctrica de dos elementos. Esta cé1ula forma parte de un circuito de puente de Wheatstone autoequilibrado y, por lo tanto, cualquier variación de presión que cambie la barra de posición, moverá la ventana ranurada y desequilibrará el puente. La señal diferencial que se produce en los dos elementos de la ce1ula es amplificada y excita un servomotor. Éste, al girar, atornilla una varilla roscada la cual comprime un resorte de realimentación que a su vez aprieta la barra de equilibrio de fuerza con una fuerza tal que compensa la fuerza desarrollada por el elemento de presión.De este modo, el sistema se estabiliza en una nueva posición de equilibrio.
Este transmisor dispone de un contador óptico-mecánico acoplado al servomotor que señala los valores de presión en una pantalla exterior.
Los transductores electrónicos de equilibrio de fuerzas se caracterizan por tener un movimiento muy pequeño de la barra de equilibrio, poseen realimentación, una elasticidad muy buena y un nivel alto en la señal de salida. Por su constitución mecánica presentan un ajuste del cero y del alcance (span) complicado y un alta sensibilidad a vibraciones y su estabilidad en el tiempo es de media a pobre.
Su intervalo de medida corresponde al del elemento mecánico que utilizan (tubo Bourdon, espiral, fuelle, diafragma ... ) y su precisión es del orden de 0,5 - 1 %
Transductores resistivos
Constituyen, sin duda, uno de los transmisores eléctricos más sencillos. Consisten en un elemento elástico (tubo Bourdon o capsula) que varia laresistencia ohmica de un potenciómetro en función de la presión. El potenciómetro puede adoptar la forma de un solo hilo continuo o bien estar arrollado a una bobina siguiendo un valor lineal o no de resistencia. Existen varios tipos de potenciómetro segun sea el elemento de resistencia: potenciómetros de grafito, de resistencia bobinada, de pelicula metálica y de plastico moldeado. En la figura 3.1 puede verse un transductor resistivo representativo que consta de un muelle de referencia, el elemento de presión y un potenciómetro de precisión. El muelle de referencia es el corazón del transductor ya que su desviación al comprimirse debe ser unicamente una función de la presión y además debe ser independiente de la temperatura, de la aceleración y de otros factores ambientes externos.
Figura 3.1 Transductor resistivo
El movimiento del elemento de presión se transmite a un brazo movil aislado que se apoya sobre el potenciómetro de precisión. Este esta conectado a un circuito de puente de Wheatstone.
Los transductores resistivos son simples y su señal de salida es bastante potente como para proporcionar una corriente de salida suficiente para el funcionamiento de los instrumentos de indicación sin necesidad de amplificación. Sin embargo, son insensibles a pequeños movimientos del contacto del cursor, muy sensibles a vibraciones y presentan una estabilidad pobre en el tiempo.
El intervalo de medida de estos transmisores corresponde al elemento de,
presión que utilizan (tubo Bourdon, fuelle ... ) y varía en general de 0-0,1 a 0-300 kg/cm². La precisión es del orden de 1-2 %
Transductores magnéticos
Se clasifican en dos grupos según el principio de funcionamiento. a) Transductores de inductancia variable figura 3.2 en los que el desplazamiento de un nucleo movil dentro de una bobina aumenta la inductancia de esta en forma casi proporcional a la porción metálica del nucleo contenida dentro de la bobina.
Figura 3.2 Transductor de inductancia variable.
El devanado de la bobina se alimenta con una corriente alterna y la f.e.m. de autoinducción generada se opone a la f.e.m. de alimentación, de tal modo que al ir penetrando el núcleo móvil dentro de la bobina la corriente presente en el circuito se va reduciendo por aumentar la f.e.m. de autoinducción.
El transformador diferencial estudiado en los transmisores electrónicos de equilibrio de fuerzas es también un transductor de inductancia variable, si bien, en lugar de considerar una sola bobina con un núcleo móvil, se trata de tres bobinas en las que la bobina central o primaria es alimentada con una corriente alterna y el flujo magnético generado induce tensiones en las otras dos bobinas, con la particularidad de que si el núcleo esta en el centro, las dos tensiones son iguales y opuestas y si se desplaza a la derecha o a la izquierda, las tensiones son distintas.
Es decir, que el transformador diferencial es más bien un aparato de relación de inductancias.
Los transductores de inductancia variable tienen las siguientes ventajas: no producen rozamiento en la medición, tienen una respuesta lineal, son pequeños y de construcción robusta y no precisan ajustes criticos en el montaie. Su precisión del orden de ± 1 %.
b) Los transductores de inductancia variable figura 3.3 consisten en un imán permanente o un electroimán que crea un campo magnético dentro del cual se mueve una armadura de material magnético.
El circuito magnético se alimenta con una fuerza magnetomotriz constante
con lo cual al cambiar la posición de la armadura varía la reluctancia y por lo
tanto el flujo magnético. Esta variación del flujo da lugar a una corriente inducida en la bobina que es, por tanto, proporcional al grado de desplazamiento de la armadura móvil.
Figura 3.3 Transductor de inductancia variable
El movimiento de la armadura es pequeño (del orden de un grado como máximo en armaduras giratorias) sin contacto alguno con las partes fijas, por lo cual no existen rozamientos eliminándose la histéresis mecánica típica de otros instrumentos.Los transductores de reluctancia variable presentan una alta sensibilidad a las vibraciones, una estabilidad media en el tiempo y son sensibles a la temperatura. Su precisión es del orden de ± 0,5 %.
Ambos tipos de transductores posicionan el núcleo o la armadura móviles con un elemento de presión (tubo Bourdon, espiral ... ) y utilizan circuitose1éctricos bobinados de puente de inductancias de corriente alterna.
Transductores capacitivos
Se basan en la variación de capacidad que se produce en un condensador al desplazarse una de sus placas por la aplicación de presión figura 3.4. La placa móvil tiene forma de diafragma y se encuentra situada entre dos placas fijas. De este modo se tienen dos condensadores uno de capacidad fija o de referencia y el otro de capacidad variable, que pueden compararse en circuitos oscilantes o bien en circuitos de puente de Wheatstone alimentados con corriente alterna.
Los transductores capacitivos se caracterizan por su pequeño tamaño y su construcción robusta, tienen un pequeño desplazamiento volumétrico y son adecuados para medidas estáticas y dinámicas. Su señal de salida es débil por lo que precisan de amplificadores con el riesgo de introducir errores en la medición. Son sensibles a las variaciones de temperatura y a las aceleraciones transversales y precisan de un ajuste de los circuitos oscilantes y de los puentes de c.a. a los que estan acoplados.
Figura 3.4 Transductor capacitivo
Su intervalo de medida es relativamente amplio, entire 0,05-5 a 0,5-600 bar y su precisión es del orden de ± 0,2 a ± 0,5 %.